
Theoret. chim. Acts  (Berl.) 5, t59--168 (1966) 

Quantum Mechanical Guides to the Potential Energy Curves 
of Some Simple ~Iolecules 

DAVID 1)ETERS 

Department of Chemistry, l~oyal Holloway College, Englefield Green, Surrey, England 

Received April 4, 1966 

The molecular orbital expression for the bond energy of a chemical bond is used to obtain 
some insight into the factors which produce the potential energy curves of a number of simple 
bonds. The resulting picture of bond formation and the potential energy curve is an electro- 
static one and it depicts the potential energy curve as the sum of a long range attractive curve 
and a short range repulsive one. Broadly speaking, that  part of the curve to the long bond 
length side of the minimum is determined essentially by the two electrons which form the bond 
and, in particular, by the 'binding energy' of these two electrons. The position of the minimum 
and the shape of the short bond length side of the curve do depend in general on the other 
valence electrons of the two atoms. The long range attractive curve is easily calculated but it is 
difficult to get the short range repulsive curve accurately. The results may prove useful in 
the construction of potential energy surfaces where the long bond length side of the potential 
energy curve is the important part. 

Der MO-Ausdruek ffir die Bindungsenergie wird bei der Betrachtung yon Potentialkurven 
einer Anzahl klciner einfaeher Bindungen benutzt. Bindungsbildung und Potentialkurve 
ergeben sich aus einem elektrostatischem Bild; die Potentialkurve enthElt einen anziehenden 
Anteil grol~er Reichweite und einen abstoBenden kleiner. Die Seite langer Bindungslgngen 
wird durch die beiden bindenden Elektronen bestimmt, das Minimum und die Seite kurzer 
Bindungsl~ngen dutch die anderen Valenzelektronen. Der anziehende Anteil der Potential- 
kurve li~Bt sieh im Gegensatz zum abstoBenden leieht berechnen. Die Ergebnisse kSnnten sich 
bei der Konstruktion yon Potentialkurven, bei denen der Auteil groBer Reichweite yon Be- 
deutung ist, als nfitzlieh erweisen. 

On utilise l'expression de l'6nergie d'une liaison chimique dans la m6thode des orbitales 
mol6culaires afin d'obtenir des ~claircissements sur les facteurs d6terminant les courbes 
d'6nergie potentielle d 'un certain nombre de liaisons simples. La repr6sentation r~sultante pour 
la formation de la liaison et pour la courbe d'6nergie potentielle est ~leetrostatique; elle d6crit 
la eourbe d'6nergie potentielle comme la somme d'une courbe d'attraction £ longue port6e et 
d'une courbe de r~pulsion £ courte port6e. D'une mani~re g6n6rale, la partie de la courbe 
situ6e par rapport au minimum du cot6 des grandes longueurs de liaison est essentiellement 
d6termin6e par les deux 61eetrons qni ferment la liaison et en partie par leur 6nergie de liaison. 
La position du minimum et la forme de la courbe du c6t6 des longueurs de liaison courtes 
d6pend en g6n~ral des autres 61ectrons de valence des deux atomes. La eourbe d'attraction 
longue port6e est faeilement caleul6e mais il est difficile d'obtenir avee pr6cision l~ courbe de 
r6pulsion £ courte por~6e. Les r6sulta¢s peuvent s'av6rer utiles pour la construction de sur- 
faces d'6nergie potentielle oh ]a pattie de la eourbe d'6nergie potentielle correspondant aux 
liaisons longues est la plus importante. 

Introduction 

There  is a t  p r e s e n t  no r e a s o n a b l y  s imple  t h e o r e t i c a l  m e t h o d  of  ca l cu l a t i ng  t h e  

p o t e n t i a l  e n e r g y  cu rve  o f  a chemica l  bond.  I t  is t r u e  t h a t  t h e  r igo rous  t h e o r e t i c a l  

m e t h o d s  are  n o w  beg inn ing  to  g ive  a c c u r a t e  p o t e n t i a l  e n e r g y  cu rves  [3], a n d  th i s  
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is a most encouraging result, but these methods are very complicated indeed and 
very much divorced from the type of physical insight which is so useful in quali- 
tative discussion and in extrapolating the results from one molecule to another. 
For example, in the nitrogen molecule the formal theory implies that the potential 
energy curve is determined by the behaviour of all fourteen electrons in the 
molecule. Such a description is not easy to visualise. No doubt all fourteen elec- 
trons do play 8ome part in determining the potential energy curve but it is natural 
to hope that at least the qualitative form of this curve is determined by the six 
electrons which we commonly suppose to form the triple bond in this molecule. 

One major simplification which is often thought to be true of potential energy 
curves is that  they are essentially the sum of an attractive curve and a repulsive 
curve and that the repulsive curve is steeper at short bond lengths but dies away 
faster at long bond lenghts. This is just the way in which a lVIors~ curve is built 
up [2] and the present theory is arranged so as to build up such a picture. There 
is an attractive curve which is a long range one and this is determined by the two 
electrons of the bond. The other valence electrons on both atoms are important 
in determining the repulsive curve and the position of the minimum i~ the po- 
tential energy curve. 

The present theory [6] already contains the rudiments of an attractive and 
a repulsive curve since the bond energy appears as a difference of two positive 
terms (small terms aside). This work is now extended to provide at least a quali- 
tative picture of how the potential energy curves of some simple bonds arise. 

One difficulty which confronts us in this work is that  the entire theory is a 
molecular orbital one and it is one of the major shorteommings of molecular 
orbital wave functions that they exagerate the importance of ionic terms and so 
are quite wrong at long bond lengths. This is why valence bond theory is ordinarily 
used in discussing long bond situations [•]. I t  turns out, however, that  if we take 
the original expression for the bond energy and modify it slightly, the resulting 
expression does describe the dissociation of the bond correctly. This amounts to 
tbrgetting about the wave function and working with the energy expression alone. 

Theory 
To begin with a simple example, consider the isolated homonuelear bond such 

as that  in the hydrogen molecule. This is a two electron problem and we can work 
out the potential energy curve quite easily. The complete wave function for the 
molecule is 

where the molecular orbital ,u is given by 
1 

,u = p~a + Po ~ pa = p~ = [2 + 2 S(va vb)] - ~ (2) 

and Ua and Vb are the normalised valence atomic orbitals which form the bond. 
S(ua Ub) is the overlap integral between these two atomic orbitals. The total energy 
of the molecule is given by 

Emolecule = 2e, -- J(#,  #) ÷ I /R  (3) 

where e~ is the eigenvalue of the Hartree-Fock equation and is also (approxima- 
tely) the ionisation energy of the molecular orbital. J(/~, ,u) is the self-energy of 
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the molecular orbital (the mutual  repulsion of the two electrons in the molecular 
orbital) and R is the internuclear distance. Atomic units (unit of energy, 27.21 eV: 
unit of length, 0.529 •) are used unless otherwise specified. The atomisation 
energy, A E ,  is then given as a positive quantity, by 

,dE = Eatoms -- Emolecule = 2 [(-st') - ( -g)] - [I/R - J(it, it)] (4) 

where g is the ionisation energy of the atom (g itself is negative) and the quantity 
[ I / R  - J ( # ,  it)] is the internal coulomb term [6/]. Notice that  the sign convention 
has been changed from that  used in reference [6/]. I f  we introduce the quanti ty 
( - & , )  which is now called the binding energy [6hi of the electron or of the molec- 
ular orbital and is defined by  

( - ~ e . )  = ( - e . ) -  ( - ~ )  (5) 

then the atomisation energy is given by  

d E  = 2(-(~e,) - [ i l R  -- J ( # ,  #)] (6) 

In  this simple example, this is the bond energy. Both terms are positive so the 
bond energy appears as the difference of the two. Up to this point, it is only the 
grouping of the terms which is at all novel. 

One might now t ry  to use this equation to calculate potential energy curves 
by evaluating e, for various bond lengths. This cannot be successful for long 
bond lengths since e~ contains within it J(#,  it) and this is a completely incorrect 
measure of the electron interaction at long bond lengths. An alternative procedure 
is to expand ( - & , )  as in the earlier work [6el giving 

~" = <it I F l i t>  = 0 .5  (~) + 0 .5  (~) - p~ ~ a  (b) - p~ ~ (~) - p~ p~ ~oa~ (~ + b) + 

+ J(it, it) (7) 
where, for example, 

C%a (b) = @a I l/rb Ira> and OJao (a ÷ b) = @a [ l ira + t/rb I ~ > .  (8) 

The binding energy is given by  

(-Set<) = p2 a Ogaa (b) ÷ p~ eJbb (a) ÷ Pa Pb COat (a -t- b) --  J ( i t ,  it) = co -- J( i t ,  it) (9) 

and the atomisation energy by 

A E  = 2 [co - g(i t ,  #)] - [ I I R  -- J( i t ,  it)] (10) 

This is close to the basic equation of this work and it represents the atomisation 
energy as a difference of two positive quantities. The equation could obviously 
be contracted further but it is convenient to leave it as it is. 

Now we know that  (i0) cannot give a correct value of zero for the bond energy 
at infinite bond length because, although the quantities eJ and i l R  vanish at 
infinite bond length, J(it, it) does not. At long bond lengths, we must obviously 
replace J( i t ,  it) by J (Ua Ub) to get the correct answer. This has been done at all bond 
lengths since various more complicated procedures for approximating J(it, it) at 
finite bond lengths gave no improvemen~ over this simple approximation. 

The modified expression for the bond energy is then 

zJE = 2 [COat --  J(va Vb)] -- [ l /Rab -- J(ua Ub)] ( l l )  

and there is no obvious reason why this should not give a useful estimate of the 
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potential energy curve of a simple bond. That  it does do so for the examples of the 
hydrogen, lithium and lithium hydride molecules is shown in Figs. l, 2 and 3. 
These results will be discussed further below but it is important  to notice now tha t  
it is these results which convince us tha t  the theory is really meaningful. This is 
because, in the more complicated bonds, there are additional uncertainties which 
make it difficult to get a clear comparison with experiment. 

Going on to the general case now, we assume for simplicity that  there are no 
lone pairs in the molecule. This does simplify the expressions without causing any 
real loss of generality. The total energy of the molecule which is built from local- 
ised bonds is written as 

Emoleeule = 2 ~ ei -- ~ J(ff~,/~i) - ~ ~ 2 G(#i, #j) + ~ (pairs) Z~ Zb/Rab (t2) 
i i i ¢ i  

where ei is the eigenvalue of the ith bond (molecular orbital), the second term is 
the total  self-energy of all the molecular orbitals, the third term is the total  
electron interaction energy between electrons in different molecular orbitals and 
the last term is the total  nuclear repulsion energy. I f  there are n-bonds and 2n- 
electrons the sums over i and ?" run over i through n. 

The total  energy of the atoms is given by 

Eatoms = ~ (atoms) t ~ 6up -- ~ ~ ~(?/ap, ?/aq) I (13) 
( p  p ¢ q  ! 

where p, q . . .  distinguish the different atomic orbitals of atom a. Remember  
that  there are no lone pairs present, so tha t  all the atomic orbitals are singly 
occupied valence atomic orbita]s. I f  the atom in the molecule is promoted, this 
must  be allowed for in writing out (13). The bar in e-up, for example, denotes tha t  
this is the ionisation energy of a singly occupied atomic orbital. This is the Van 
Vleck atom in the molecule in which the interaction between the pair of valence 
electrons in the atomic orbitals ?~ap and ?Jaq is written 

j(~, ,  ~q)_ (1) K(~ ,  V~q). 

Suppose next that  all the bonds of the molecule are non-polar. We know [6i] 
that  this will cause only a small error in the atomisution energy. Suppose that  the 
molecular orbital ffi is the bond between atoms a and b while #j is tha t  between 
atoms a and c. These molecular orbitals are given by  

1 _ !  
,ui = (rap + V~q) (2 + 2 S t ) - 2  #j = (Var -~- Yes) (2 + 2 Sj) 2 (14) 

The coulomb integral is expanded as 

4 J(/~i, ~aj) : J(vap, ?'at) + J(vap, vcs) ~- J(Vbq, Var) "~- J(~'bq, ~'cs) • (15) 

The matching expansion of the exchange integral is given by 

4 K(ff i , /~j)  = K(rap, Vat) + K(vap, Vcs) + K(Vbq, Var) + K(Vbq, ?)c8) . (t6) 

The coulomb integral expansion is MULLIKEN'S [d] and the matching expansion 
of the exchange integrals was suggested earlier [6e]. The question of the reliabil- 
i ty of this expansion for the exchange integrals requires further study but the 
essential motivation for the use of (i6) is that  it leads to the cancelling of the G- 
integrals of (i3) from the expression for the atomisation energy. I f  one does not 
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use this expansion for the exchange energy, there is no simple expression for the 
bond energy and further progress is difficult. 

The expansions (15) and (16) are used for all the G-integrals of (12) and then 
the atomisation energy is written down as a positive quantity by subtracting the 
energy of the molecule from that of the atoms. The result is 

E = ~ E i  (t7) 
i=l 

where i labels the bond and E i is the bond energy given by 

E i = 2 ( -dei)  - [ t /R t  - J (# i ,  #d] - Ci. (18) 

The first term is the binding energy again and is dealt with below, the second 
term is the internal coulomb term [6[] and the last term is the main coulomb term 
[6[] defined by 

/),q 

where the sums run over all the valence atomic orbitals of atoms a and b, omitting 
from the double sum only that  pair which forms the bond. Remember that  the i th 
molecular orbital joins atoms a and b and notice that the sign convention has 
been changed as compared with reference [6]]. Experience shows that this main 
coulomb term is too repulsive and so the natural thing do do is to omit the ex- 
change terms and use instead the expression 

Ct = (Za Z b  - -  l ) / R a b  - -  ~ ~ J(vap, Vbq) . (19') 

There are certain other small terms which have been omitted from these equa- 
tions [6/]. 

We are going to use the same sort of simplification as in the simple bonds. 
That is, we expand the binding energy as 

( - - d e i )  = ( - - e i )  - -  (½) [ ( - - ~ a p )  @ ( - - e b q ) ]  = (Dab - -  J( /~ ,  #1) (20) 

and Wab is given as before by 

O)ab = p2a 09aa (b) ÷ p~ Wbb (a) ÷ Pa Pb (Dab ((Z -~ b) . (2I) 

The difference from the isolated two electron bond case lies in the definitions of 
the operator which appears in the (Daa (b) etc. This is now the operator ~a, say, 
which is given by 

9 ~  = z~/r~ - ~ a(~o, ) (22) 
where Za is the charge, in atomic units, on nucleus a and the sum runs over all the 
other valence electrons of atom a. Since we are supposing that  the atom in the 
molecule is electrically neutral and that  dissociation of the molecule gives neutral 
atoms, this operator is roughly equal to 1Ira. Then the integrals in (2t) are given by 

(Daa (b) = @a t f2o ] va) (Dab (a + b) = @a IDa @ Db ] Vb) . (23) 

We wi]l also use the approximation of replacing J(ke, #)  by J(va, vb) as for the 
simpler bonds. 

The final expression for the bond energy of the i th bond in the general case is 

E t = 2 [(Di -- J~] -- [ l /R i  -- Jt]  -- Ci (24) 
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where coi has been written in place of coao. Remember that  the ith bond joins 
atoms a and b. 

The working equation is tha t  given in (24). As it stands, however, this is not 
sufficiently accurate to be useful. One difficulty is that,  in approximating the two 
electron integrals, we have lost too much numerical accuracy for the main coulomb 
term Ci to give good results in all cases. We know the qualitative form of this curve : 
it vanishes at infinite bond length and is positive (in the sense that  it represents a 
repulsion) at finite bond lengths. What  we have done is to derive both the calcu- 
lated form of the main coulomb term from Eq. (t9) and, if  necessary, an empirical 
form Cemp, which would lead to exact aga'eement with experiment. Another 
difficulty with Eq. (24) is the calculation of the integrals in the 3) operator. 
Previous experience with this operator [6e, [] has shown that  it tends to be about 
i.5/r at short bond lengths and we know tha t  it tends to l i t  at infinite bond length. 
What  we have done for the moment  is to use i/r for this operator for all bond 
lengths. This may  prove t.o be a serious source of trouble but, like the approxi- 
mation used for the main coulomb term, further work may  show tha t  it does 
represent the f2 operator reasonably well. I t  is, of course, possible to improve on 
both of these approximations in an effort to achieve closer agreement with experi- 
ment. 

The calculations on which Figs. I to 7 are based are those of Eq. (24) modified 
as in the above paragraph. The experimental potential energy curves are Morse 
curves drawn from the values of ~e, De and re given by H ~ z ~ c ~  [2]. 

Discussion 

The important  result of this work is the physical picture of bond formation as 
the balancing of the attractive curve 2 (co - J),  called the binding energy of the 
electrons, and the two repulsive coulomb terms. Moreover, it is shown below and 
in the figures that  the attractive term alone is enough to reproduce much of the 
long bond length side of the potential energy curve. The calculation of the position 
of the minimum is much more difficult because it involves the main coulomb term 
in the general case. This term is difficult to calculate accurately although the results 
in Figs. 5, 6 and 7 show that  the calculated and empirical forms are similar. I t  is 
certainly reasonable to suppose that ,  even ff we cannot calculate the whole of the 
potential energy curve in detail, the general physical picture is correct. Perhaps 
we should look for more semi-empirical formulations of the repulsive curves, or 
perhaps we should t ry  the use of more accurate expansions for the two electron 
integrals. 

One attractive feature of this method is tha t  it gives a purely electrostatic 
picture of bond formation. Both the kinetic energy of the electrons and the 
exchange energy between the pair of electrons which form the bond have been 
absorbed into the background leaving just the electrostatic interactions between 
the electron clouds and the nuclei to determine the bond energy and the potential 
energy curve. I t  should be appreciated, of course, that  this result is not so clear-cut 
as this s tatement suggests. The electron kinetic energy must  change on molecule 
formation and this point requires further study. 

Taking the individual molecules now, the hydrogen, lithium and lithium 
hydride molecules are two electron problems with no main coulomb term to 
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complicate matters. These are simple mo- 

lecules but they do differ in that the hydro- 
gen molecule has a short strong bond, the 
lithium molecule has a long weak bond and 
the lithium hydride molecule is interme- 
diate between the two. This work easily 
reproduces these differences. This result is 
a confirmation of the use of J(va Ub) in 
place of J(/~, if) for all bond lengths. It 
is true that the calculated curves do lie 
somewhat below the experimental ones on 
the long bond lengtli side and this may be 
a result of using Y(ua v~,) in place of Y(ff, ~) 
because the lat ter  is commonly l to 2 eV 
larger at the equilibrium internuclear dis- 
tance and this is about right to explain 
the discrepancy. Notice tha t  the vari- 
ation theorem does not apply here be- 
cause the integrals are being approx- 
imated. 

The result for the hydrogen molecule 
is interesting because the original theory 
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gives about 2.5 eV for the bond energy at the equilibrium internuclear distance. 
This represents an error of about 2 eV, one half of which is the correlation error 
and the other half comes from the use of an approximate form for the molecular 
orbital. I t  seems that  when we replace J(/~,/~) by J(va v~) we recover not only the 
correlation error but also the error which comes from the use of an approximate 
form for the molecular orbital. This result seems fortuitous but it may  be pos- 
sible to exploit it constructively in the future if it proves to be general. 

The lithium hydride result is interesting in another way. The result in Fig. 3 
was obtained while ignoring both the polarity of the bond and any hybridisation 
in the lithium valence atomic orbital. Evidently these two factors do not play a 
large p a r t  in determining the bond energy and the potential energy curve. This is 
consistent with other findings [6i]. 

The BH molecule in Fig. 4 is the first example in which the main coulomb term 
is present and it is also the first case in which we use the l / r  approximation in 
place of the ~ operator. The explicit form of the main coulomb term in this case is 

C = 2 / R  - 2 J(ist~, 2s~). 

The agreement between the experimental and calculated potential energy curves 
is so good that  both approximations are surely working well here. The figure 
shows the three separate terms which enter the bond energy and it is easy to see 
by inspection that  if one were to leave out the main coulomb term C the resulting 
bond would be about twice too strong and much too short. I t  seems that  already 
in this case the other electrons of the two atoms are important in determining the 
bond strength and the bond length. We have again ignored the fact that  the bond 
in the BH molecule is slightly polar and that  there might be some hybridisation 
in the valence atomic orbital which the boron atom uses to form the bond. I t  is 
clear that  any effects form these two sources are not very large. 

The results for the hydrogen fluoride molecule take us one step further and 
show what happens when more electrons contribute to the main coulomb term. 
The latter is now given by 

C = 6 / R  -- 2 J ( l s m  2sF) - 4 J ( l s m  2p~F) 

and it is clear from the figure that  this term is too repulsive. This is the first case 
in which we derive an empirical main coulomb term by taking the difference 
between the other two terms and the experimental result. I t  is clear that  the 
empirical main coulomb term is very like the calculated one but shifted along the 
axis. I t  is also clear that  the part of the experimental potential energy curve to the 
long bond length side of about 2.5 a 0 is determined by the attractive curve alone. 
So even if we cannot find the whole curve, we can find a substantial par~ of it. 

The nitrogen molecule results are more complicated in that  there is a triple 
bond and, al though each bond has its own internal coulomb term, there is only 
one main coulomb term. I t  turns out that  it is best to take the ~ bond with its 
internal coulomb term and define 

E ~  = 2 Ion, - -  J~] - -  [ l / R  - -  J~]  . 

This function has the simple behaviour shown in the figure. Interestingly enough, 
there is a minimum in this curve at just the correct point and this result should be 
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explored further. As to the s bond  of the nitrogen molecule, this behaves ra ther  
like tha t  of the hydrogen fluoride molecule, the calculated form of the main  
coulomb term being clearly too repulsive. So again we find an empirical main  
coulomb term as in the figure, a l though tha t  par t  of  the potential  energy curve to  
the r ight of the min imum is again largely determined by  the at t ract ive curves. 

The results for the fluorine molecule in Fig. 7 are included to  show tha t  mat te rs  
are not  always as simple as in the earlier examples. The results are consistent with 
the  others in t ha t  the calculated main  coulomb term is too repulsive and tha t  
the at t ract ive curve is quite close to the experimental  curve at long bond lengths. 
I t  does seem odd, however, t ha t  the internal coulomb term should be a t t rac t ive  
while in all the other  examples it is negative or repulsive. 

Conclusions 

The point  of this work is to get as close as possible to the experimental  facts  
wi thout  introducing ill-defined quantities into the theory  (coulomb integrals, re- 
sonance integrals, electronegativity etc.) but  without  resorting to the use of  elaborate 
wave functions and extensive computations.  I n  some senses, the work is intermediate  
between the elaborate methods and the use of  such devices as MULLIKE~"S magic 
formula [5]. The results are disappointing in t ha t  we cannot  get the whole of  the  
potential  energy curve and perhaps a semi-empiricM formulat ion of the main  
coulomb te rm is required. On the other hand, we can get the long bond length side 
of the potential energy curve and this is the part that matters as far as potential 
energy surfaces are converned, so perhaps this method will prove helpful for the 
chemical reactivity problem. Another problem which we may study is the nature 
of the carbon-hydrogen bond and why it is that the bond energy of this bond is 
variable. Finally, it is important to see how it is that the bond energy can be gi- 
ven by twice the binding energy of a molecular orbital, as we commonly suppose, 
and the present results show this result reasonably clearly. 
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